namnic

Method for the Synthesis of Dibenzo[g,p]Chrysenes: Domino Friedel−Crafts-Type Cyclization of Difluoroethenes Bearing Two Biaryl Groups

Naoto Suzuki, Takeshi Fujita, and Junji Ichikawa*

Division of Chemistry, Faculty of Pure and Applied Sciences[, U](#page-2-0)niversity of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

S Supporting Information

[ABSTRACT:](#page-2-0) Dibenzo[g,p]chrysenes were readily synthesized via the superacidor TiF4-mediated domino Friedel−Crafts-type cyclization of 1,1-difluoroethenes bearing two biaryl groups, which were easily prepared via the Suzuki−Miyaura coupling of 1,1-difluoro-2,2-diiodoethene or 1-(biphenyl-2-yl)-1-bromo-2,2 difluoroethene. Using this approach, the activation of both vinylic and aromatic C−F bonds was successfully achieved to make new C−C bonds.

 Δ ibenzo $[g, p]$ chrysenes constitute a unique class of polycyclic aromatic hydrocarbons (PAHs) because of their characteristic double helical structure.¹ Their twisted π -systems are expected to be suitable for organic semiconductors directed toward electronic devices, such as [t](#page-2-0)hin-film transistors and organic light-emitting diodes; 2 thus, they have attracted much interest. So far, dibenzo $[g, p]$ chrysenes have mainly been synthesized via the followi[ng](#page-2-0) processes: (i) intramolecular oxidative carbon−carbon bond formation of 9,10-diarylphenanthrenes,³ 1,2-bis(biaryl-2-yl)ethynes,⁴ or 9-(biaryl-2-yl)phenanthrenes; 5 (ii) intramolecular Pd-catalyzed dehydrohaloge[n](#page-2-0)ation of 9-(biaryl-2-yl)-10-iodophen[an](#page-2-0)threnes⁶ or (E) -1,2-diaryl-1,2[-b](#page-2-0)is(2-bromoaryl)ethenes;⁷ and (iii) intermolecular metal-catalyzed cross-coupling between 9,10-di[b](#page-2-0)orylphenanthrenes and $2,2'$ -dibr[o](#page-2-0)mobiaryls⁸ or between phenanthrenes and dibenzosiloles.⁹ Most of these methods were limited in substrate scope; for example, p[he](#page-2-0)nanthrene frameworks were required.

We have already developed facile methods for PAH synthesis via Friedel−Crafts-type cyclizations of fluorinated cationic species.¹⁰ In our previous report, 1,1-difluoroethenes 1, bearing two 2-arylethyl groups, afforded tetracyclic compounds in high yields b[y t](#page-3-0)reatment with magic acid ($\text{FSO}_3H\text{-}SbF_5$) in 1,1,1,3,3,3hexafluoropropan-2-ol (HFIP), through the cleavage of two vinylic C−F bonds (Scheme 1a).^{10a,c} The cyclized products successfully underwent subsequent oxidation by trityl tetrafluoroborate or palladium on carbo[n to y](#page-3-0)ield helicenes 2. Herein, we demonstrate the synthesis of dibenzo $[g, p]$ chrysenes 4 via the domino Friedel−Crafts-type cyclization of 1,1-difluoroethenes 3 bearing two biaryl groups, mediated by magic acid or titanium(IV) fluoride (Scheme 1b). In this approach, the activation of both vinylic and aromatic C−F bonds was successfully effected to achieve direct construction of two aromatic rings without any oxidation process.¹¹

Cyclization precursors, symmetrically or unsymmetrically substituted 1,1-bis(biaryl-2-yl)-2,2-difluoroet[hen](#page-3-0)es 3, were readily prepared from 1,1,1-trifluoro-2-iodoethane (5) or 1,1-

(a) Previous work

difluoroethylene (6), respectively, which are commercially available starting materials (Scheme 2). The double Suzuki− Miyaura coupling between potassium (biaryl-2-yl) trifluoroborates and 1,1-difl[uoro-2,2-d](#page-1-0)iiodoethene (7) ,¹² obtained by successive treatment of 5 with LDA and I_2 , gave symmetrical 1,1-bis(biaryl-2-yl)-2,2-difluoroethenes [3](#page-3-0)a−d (Scheme 2i). In contrast, unsymmetrical 1,1-bis(biaryl-2-yl)- 2,2-difluoroethenes 3e−m were prepared via the Suzuki− [Miyaura co](#page-1-0)upling between (biaryl-2-yl)trifluoroborates and 1- (biphenyl-2-yl)-1-bromo-2,2-difluoroethene (8), which was obtained via the Negishi coupling of the 2,2-difluorovinylzinc−

Received: August 22, 2015 Published: September 29, 2015

(i) Symmetrical Precursors 3a-3d

TMEDA complex derived from 6^{13} and subsequent bromination of the intermediary difluoroalkene¹⁴ 9 (Scheme 2ii). With the availability of these two prot[oco](#page-3-0)ls, i and ii, a variety of difluoroethenes 3 were synthesize[d.](#page-3-0)

Using 1,1-bis(biphenyl-2-yl)-2,2-difluoroethene (3a) as a model compound, we sought suitable conditions for the domino Friedel−Crafts-type cyclization with a series of Brønsted and Lewis acids (Table 1). The reactions of 3a with acids were performed in HFIP, which possesses a substantial cation stabilization effect. 10,15,16 When p-toluenesulfonic acid (TsOH) was employed, no cyclization products were observed (entry 1). However, on trea[tment w](#page-3-0)ith 2.5 equiv of trifluoromethanesulfonic acid (TfOH), the desired domino cyclization product, dibenzo[g,p]chrysene (4a), was obtained in 59% yield (entry 2). The use of magic acid improved the yield of 4a to 95% (entry 3). In contrast, among the Lewis acids examined $(BF_3 \cdot OEt_2)$, Me3SiOTf, ZrF4, TiCl4, TiF4; entries 4−8), TiF4 in HFIP specifically promoted the cyclization of 3a to afford 4a in 93% yield (entry 8), while reaction in CH_2Cl_2 instead of HFIP selectively gave the monocyclization product, fluorophenanthrene 10a, in 85% yield (entry 9). These results indicated that the stabilizing effect of HFIP on carbocations might be highly important for the second cyclization.^{10,15,16}

Cyclization of other difluoroethenes 3 with magic acid or $TiF₄$ (method A or B) was examined for [the syn](#page-3-0)thesis of substituted dibenzo $[g, p]$ chrysenes 4 (Table 2). Both symmetrically substituted difluoroethenes 3b−d and unsymmetrically sub-

Scheme 2. Preparation of Cyclization Precursors 3 Table 1. Screening of Acids for the Domino Friedel−Crafts-Type Cyclization of Difluoroethene 3a

^{a1}H NMR yield using CH₂Br₂ as an internal standard. ^bND = Not detected. ^c(CF₃)₂CHOH–CH₂Cl₂ (10:1), 0 °C, 10 min. ^dCH₂Cl₂, 40 $^{\circ}$ C, 6 h.

Table 2. Synthesis of Substituted Dibenzo $[g, p]$ chrysenes 4

stituted ones 3e−m successfully underwent a domino Friedel− Crafts-type cyclization with the appropriate choice of acid promotors. Use of TiF_4 (method B) was preferable for cyclization of alkyl- and aryl-substituted (more reactive) substrates 3b, 3c, 3e, 3f, 3i, 3j, and 3k, which led to the effective formation of the corresponding dibenzo $[g, p]$ chrysenes 4b, 4c, 4e, 4f, 4i, 4j, and 4k. Rapid completion of the reactions with magic acid (method A) was observed for cyclization of the halogen-substituted (less reactive) precursors 3d, 3g, 3h, 3l, and

3m, affording the halogen-substituted dibenzo $[g, p]$ chrysenes 4d, 4g, 4h, 4l, and 4m, in good yields.

A plausible reaction mechanism for this cyclization is shown in Scheme 3. First, protonation of the difluoroethene moiety in 3a

Scheme 3. Proposed Reaction Mechanism

regioselectively generates the cationic intermediate A, in which the carbocation is stabilized by the α -fluorine substituents. A Friedel−Crafts-type cyclization followed by the elimination of HF allows C−C bond formation and vinylic C−F bond cleavage to afford 9-(biphenyl-2-yl)-10-fluorophenanthrene 10a. The second cyclization is induced by the protonation of the phenanthryl moiety in 10a. Thus, a further Friedel−Crafts-type cyclization proceeds through the fluorine-stabilized arenium ion \mathbf{B} ,¹⁰ resulting in aromatic C−F bond cleavage.¹⁷

To gain some experimental evidence to support the proposed re[act](#page-3-0)ion mechanism, we attempted the acid-m[edi](#page-3-0)ated cyclization of fluorophenanthrene 10a, which was prepared via cyclization of 3a with TiF_4 in CH_2Cl_2 (Table 1, entry 9). Treatment of 10a with magic acid or TiF₄ in HFIP-CH₂Cl₂ (10:1) or HFIP afforded dibenzo[g,p]chrysene (4a[\) in exc](#page-1-0)ellent yields (Scheme 4). These

Scheme 4. Cyclization of Fluorophenanthrene 10a

results suggested that 10a was generated in situ as an intermediate by the first cyclization and then underwent the second cyclization, where the aromatic C−F bond cleavage was accomplished. It was noted that cleavage of an aromatic C−F bond, which has been considered to be difficult to activate, was readily achieved under cationic conditions with the aid of a Brønsted or Lewis acid in HFIP.

In conclusion, we have achieved a domino Friedel−Crafts-type cyclization of difluoroethenes, [wh](#page-3-0)ich provides easy access to dibenzo[g,p]chrysenes. A scalable synthesis of dibenzo[g,p]chrysenes is conducted by starting from accessible, storable 1,1,1trifluoro-2-iodoethane or 1,1-difluoroethene. Dibenzo $[g, p]$ chrysenes possess a double helical structure due to the presence of two inherent helicene moieties. Their application to new electronic materials will be stimulated by the approach presented in this study.

■ ASSOCIATED CONTENT

6 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b02426.

Experimental details, characterization data, and NMR spectra (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: junji@chem.tsukuba.ac.jp.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This research is partly supported by MEXT/JSPS KAKENHI (J.I., No. 25288016), the Asahi Glass Foundation (J.I.), and Izumi Science and Technology Foundation (T.F.). We acknowledge the generous gifts of (CF_3) ₂CHOH (HFIP) from Central Glass Co., Ltd. and CF_3CH_2I from Tosoh F-Tech, Inc.

■ REFERENCES

(1) For selected papers on construction of double helical structures, see: (a) Shiraishi, K.; Rajca, A.; Pink, M.; Rajca, S. J. Am. Chem. Soc. 2005, 127, 9312−9313. (b) Wang, Z.; Shi, J.; Wang, J.; Li, C.; Tian, X.; Cheng, Y.; Wang, H. Org. Lett. 2010, 12, 456−459. (c) Nakanishi, W.; Matsuno, T.; Ichikawa, J.; Isobe, H. Angew. Chem., Int. Ed. 2011, 50, 6048−6051. (d) Eversloh, C. L.; Liu, Z.; Müller, B.; Stangl, M.; Li, C.; Müllen, K. Org. Lett. 2011, 13, 5528−5531. (e) Hatakeyama, T.; Hashimoto, S.; Seki, S.; Nakamura, M. J. Am. Chem. Soc. 2011, 133, 18614−18617. (f) Luo, J.; Xu, X.; Mao, R.; Miao, Q. J. Am. Chem. Soc. 2012, 134, 13796−13803. (g) Xiao, S.; Kang, S. J.; Wu, Y.; Ahn, S.; Kim, J. B.; Loo, Y.-L.; Siegrist, T.; Steigerwald, M. L.; Li, H.; Nuckolls, C. Chem. Sci. 2013, 4, 2018− 2023. (h) Nakamura, K.; Furumi, S.; Takeuchi, M.; Shibuya, T.; Tanaka, K. J. Am. Chem. Soc. 2014, 136, 5555−5558. (i) Hashimoto, S.; Nakatsuka, S.; Nakamura, M.; Hatakeyama, T. Angew. Chem., Int. Ed. 2014, 53, 14074−14076. (j) Kashihara, H.; Asada, T.; Kamikawa, K. Chem. - Eur. J. 2015, 21, 6523−6527. (k) Sakamaki, D.; Kumano, D.; Yashima, E.; Seki, S. Angew. Chem., Int. Ed. 2015, 54, 5404−5407.

(2) (a) Mori, T.; Fujita, K.; Kimura, M. J. Photopolym. Sci. Technol. 2010, 23, 317−322. (b) Chaudhuri, R.; Hsu, M.-Y.; Li, C.-W.; Wang, C.- I.; Chen, C.-J.; Lai, C.-K.; Chen, L.-Y.; Liu, S.-H.; Wu, C.-C.; Liu, R.-S. Org. Lett. 2008, 10, 3053−3056.

(3) (a) Mukherjee, A.; Pati, K.; Liu, R.-S. J. Org. Chem. 2009, 74, 6311− 6314. (b) Navale, T. S.; Thakur, K.; Rathore, R. Org. Lett. 2011, 13, 1634−1637.

(4) (a) Yamaguchi, S.; Swager, T. M. J. Am. Chem. Soc. 2001, 123, 12087−12088. (b) Mukherjee, A.; Pati, K.; Liu, R.-S. J. Org. Chem. 2009, 74, 6311−6314.

(5) Mochida, K.; Kawasumi, K.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2011, 133, 10716−10719.

(6) Li, C.-W.; Wang, C.-I.; Liao, H.-Y.; Chaudhuri, R.; Liu, R.-S. J. Org. Chem. 2007, 72, 9203−9207.

(7) Ueda, Y.; Tsuji, H.; Tanaka, H.; Nakamura, E. Chem. - Asian J. 2014, 9, 1623−1628.

(8) Shimizu, M.; Nagao, I.; Tomioka, Y.; Kadowaki, T.; Hiyama, T. Tetrahedron 2011, 67, 8014−8026.

(9) Ozaki, K.; Kawasumi, K.; Shibata, M.; Ito, H.; Itami, K. Nat. Commun. 2015, 6, 6251.

(10) (a) Ichikawa, J.; Yokota, M.; Kudo, T.; Umezaki, S. Angew. Chem., Int. Ed. 2008, 47, 4870−4873. (b) Isobe, H.; Hitosugi, S.; Matsuno, T.; Iwamoto, T.; Ichikawa, J. Org. Lett. 2009, 11, 4026−4028. (c) Fuchibe, K.; Jyono, H.; Fujiwara, M.; Kudo, T.; Yokota, M.; Ichikawa, J. Chem. - Eur. J. 2011, 17, 12175−12185. (d) Fuchibe, K.; Mayumi, Y.; Zhao, N.; Watanabe, S.; Yokota, M.; Ichikawa, J. Angew. Chem., Int. Ed. 2013, 52, 7825−7828. (e) Fuchibe, K.; Mayumi, Y.; Yokota, M.; Aihara, H.; Ichikawa, J. Bull. Chem. Soc. Jpn. 2014, 87, 942−949. (f) Fuchibe, K.; Morikawa, T.; Shigeno, K.; Fujita, T.; Ichikawa, J. Org. Lett. 2015, 17, 1126−1129. (g) Fuchibe, K.; Morikawa, T.; Ueda, R.; Okauchi, T.; Ichikawa, J. J. Fluorine Chem. 2015, DOI: 10.1016/j.jfluchem.2015.06.008.

(11) For recent reviews on C−F bond activation, see: (a) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119−2183. (b) Stahl, T.; Klare, H. F. T.; Oestreich, M. ACS Catal. 2013, 3, 1578−1587. (c) Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Chem. Rev. 2015, 115, 931−972. (d) Unzner, T. A.; Magauer, T. Tetrahedron Lett. 2015, 56, 877−883. (12) Fujita, T.; Suzuki, N.; Ichitsuka, T.; Ichikawa, J. J. Fluorine Chem. 2013, 155, 97−101.

(13) (a) Fujita, T.; Ichitsuka, T.; Fuchibe, K.; Ichikawa, J. Chem. Lett. 2011, 40, 986−988. (b) Ichitsuka, T.; Takanohashi, T.; Fujita, T.; Ichikawa, J. J. Fluorine Chem. 2015, 170, 29−37.

(14) Burton, D. J.; Anderson, A. L.; Takei, R.; Koch, H. F.; Shih, T. L. J. Fluorine Chem. 1980, 16, 229−235.

(15) For selected papers on carbocationic processes in HFIP, see: (a) Ichikawa, J.; Miyazaki, S.; Fujiwara, M.; Minami, T. J. Org. Chem. 1995, 60, 2320−2321. (b) Ichikawa, J.; Jyono, H.; Kudo, T.; Fujiwara, M.; Yokota, M. Synthesis 2005, 39−46. (c) Ichikawa, J.; Kaneko, M.; Yokota, M.; Itonaga, M.; Yokoyama, T. Org. Lett. 2006, 8, 3167−3170. (d) Nishiwaki, N.; Kamimura, R.; Shono, K.; Kawakami, T.; Nakayama, K.; Nishino, K.; Nakayama, T.; Takahashi, K.; Nakamura, A.; Hosokawa, T. Tetrahedron Lett. 2010, 51, 3590−3592. (e) Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F. Angew. Chem., Int. Ed. 2014, 53, 13835−13839. (f) Gaster, E.; Vainer, Y.; Regev, A.; Narute, S.; Sudheendran, K.; Werbeloff, A.; Shalit, H.; Pappo, D. Angew. Chem., Int. Ed. 2015, 54, 4198−4202. (g) Ricardo, C. L.; Mo, X.; McCubbin, J. A.; Hall, D. G. Chem. - Eur. J. 2015, 21, 4218−4223.

(16) For reviews on fluorinated alcohols, see: (a) Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 18−29. (b) Shuklov, I. A.; Dubrovina, N. V.; Börner, A. Synthesis 2007, 2007, 2925-2943. (c) Dohi, T.; Yamaoka, N.; Kita, Y. Tetrahedron 2010, 66, 5775−5785. (d) Khaksar, S. J. Fluorine Chem. 2015, 172, 51−61.

(17) Similarly, Lewis acid mediated defluorinative coupling reactions have been also reported as efficient synthetic methods for PAHs by Siegel and Amsharov. See: (a) Allemann, O.; Duttwyler, S.; Romanato, P.; Baldridge, K. K.; Siegel, J. S. Science 2011, 332, 574−577. (b) Amsharov, K. Y.; Kabdulov, M. A.; Jansen, M. Angew. Chem., Int. Ed. 2012, 51, 4594−4597.